Dataframe-input,output(csv, exel ve html) dosyaları
In [1]:
import pandas as pd # her zamanki gibi öncelikle kullanacağımız pandas kütüphanesini import ediyoruz.
data.gov sitesinden herhangi bir csv dosyası buldum. “https://data.cdc.gov/api/views/bi63-dtpu/rows.csv” download linkini csv ye kadar koplayayıp aldım.
In [5]:
df=pd.read_csv("https://data.cdc.gov/api/views/bi63-dtpu/rows.csv")
# okuma süresi yüklediğimiz dosyanın boyutuna göre değişkenlik gösterir
In [6]:
df
Out[6]:
Year | 113 Cause Name | Cause Name | State | Deaths | Age-adjusted Death Rate | |
---|---|---|---|---|---|---|
0 | 2012 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Vermont | 21 | 2.6 |
1 | 2016 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Vermont | 30 | 3.7 |
2 | 2013 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Vermont | 30 | 3.8 |
3 | 2000 | Intentional self-harm (suicide) (*U03,X60-X84,… | Suicide | District of Columbia | 23 | 3.8 |
4 | 2014 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Arizona | 325 | 4.1 |
5 | 2009 | Intentional self-harm (suicide) (*U03,X60-X84,… | Suicide | District of Columbia | 29 | 4.4 |
6 | 2011 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | South Dakota | 49 | 4.5 |
7 | 2014 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Vermont | 37 | 4.5 |
8 | 2015 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Vermont | 39 | 4.5 |
9 | 2013 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Arizona | 374 | 4.9 |
10 | 2015 | Intentional self-harm (suicide) (*U03,X60-X84,… | Suicide | District of Columbia | 34 | 4.9 |
11 | 2001 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Washington | 279 | 5.0 |
12 | 1999 | Intentional self-harm (suicide) (*U03,X60-X84,… | Suicide | District of Columbia | 30 | 5.1 |
13 | 2016 | Intentional self-harm (suicide) (*U03,X60-X84,… | Suicide | District of Columbia | 40 | 5.2 |
14 | 1999 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Washington | 278 | 5.2 |
15 | 2002 | Intentional self-harm (suicide) (*U03,X60-X84,… | Suicide | District of Columbia | 31 | 5.2 |
16 | 2006 | Intentional self-harm (suicide) (*U03,X60-X84,… | Suicide | District of Columbia | 30 | 5.2 |
17 | 2003 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Washington | 304 | 5.3 |
18 | 2011 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Vermont | 43 | 5.4 |
19 | 2002 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Washington | 306 | 5.4 |
20 | 2000 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Washington | 293 | 5.4 |
21 | 2008 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Vermont | 39 | 5.4 |
22 | 2005 | Intentional self-harm (suicide) (*U03,X60-X84,… | Suicide | District of Columbia | 33 | 5.4 |
23 | 2015 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Arizona | 458 | 5.5 |
24 | 2004 | Intentional self-harm (suicide) (*U03,X60-X84,… | Suicide | District of Columbia | 33 | 5.5 |
25 | 2012 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | South Dakota | 58 | 5.6 |
26 | 2011 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Arizona | 395 | 5.6 |
27 | 2011 | Intentional self-harm (suicide) (*U03,X60-X84,… | Suicide | District of Columbia | 37 | 5.6 |
28 | 2016 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Arizona | 487 | 5.7 |
29 | 2012 | Nephritis, nephrotic syndrome and nephrosis (N… | Kidney disease | Arizona | 414 | 5.7 |
… | … | … | … | … | … | … |
10266 | 2002 | All Causes | All causes | West Virginia | 21016 | 999.0 |
10267 | 2006 | All Causes | All causes | Mississippi | 28564 | 999.1 |
10268 | 2001 | All Causes | All causes | West Virginia | 20967 | 1000.9 |
10269 | 2005 | All Causes | All causes | Alabama | 47090 | 1001.3 |
10270 | 2001 | All Causes | All causes | Alabama | 45316 | 1002.1 |
10271 | 2003 | All Causes | All causes | West Virginia | 21306 | 1003.1 |
10272 | 1999 | All Causes | All causes | Kentucky | 39321 | 1004.1 |
10273 | 2000 | All Causes | All causes | Alabama | 45062 | 1004.8 |
10274 | 2000 | All Causes | All causes | Louisiana | 41138 | 1006.3 |
10275 | 2002 | All Causes | All causes | Louisiana | 41984 | 1008.5 |
10276 | 1999 | All Causes | All causes | Alabama | 44806 | 1009.3 |
10277 | 2002 | All Causes | All causes | Kentucky | 40697 | 1009.7 |
10278 | 2000 | All Causes | All causes | West Virginia | 21114 | 1011.1 |
10279 | 1999 | All Causes | All causes | West Virginia | 21049 | 1012.3 |
10280 | 2001 | All Causes | All causes | Louisiana | 41757 | 1013.1 |
10281 | 2002 | All Causes | All causes | Alabama | 46069 | 1013.4 |
10282 | 2003 | All Causes | All causes | Louisiana | 42719 | 1013.7 |
10283 | 2003 | All Causes | All causes | Alabama | 46716 | 1020.2 |
10284 | 1999 | All Causes | All causes | Louisiana | 41238 | 1021.6 |
10285 | 2005 | All Causes | All causes | Louisiana | 44355 | 1023.7 |
10286 | 2005 | All Causes | All causes | Mississippi | 29196 | 1028.7 |
10287 | 2003 | All Causes | All causes | Mississippi | 28489 | 1031.6 |
10288 | 2002 | All Causes | All causes | District of Columbia | 5851 | 1034.1 |
10289 | 2001 | All Causes | All causes | Mississippi | 28259 | 1034.3 |
10290 | 1999 | All Causes | All causes | Mississippi | 28185 | 1043.4 |
10291 | 2001 | All Causes | All causes | District of Columbia | 5951 | 1049.9 |
10292 | 2002 | All Causes | All causes | Mississippi | 28853 | 1051.6 |
10293 | 2000 | All Causes | All causes | Mississippi | 28654 | 1051.9 |
10294 | 2000 | All Causes | All causes | District of Columbia | 6001 | 1061.2 |
10295 | 1999 | All Causes | All causes | District of Columbia | 6076 | 1087.3 |
10296 rows × 6 columns
In [7]:
df["State"].tolist() # seçtiğimiz bir sütunu python listesine çevirme işlemi
Out[7]:
['Vermont', 'Vermont', 'Vermont', 'District of Columbia', 'Arizona', 'District of Columbia', 'South Dakota', 'Vermont', 'Vermont', 'Arizona', 'District of Columbia', 'Washington', 'District of Columbia', 'District of Columbia', 'Washington', 'District of Columbia', 'District of Columbia', 'Washington', 'Vermont', 'Washington', 'Washington', 'Vermont', 'District of Columbia', 'Arizona', 'District of Columbia', 'South Dakota', 'Arizona', 'District of Columbia', 'Arizona', 'Arizona', 'District of Columbia', 'District of Columbia', 'South Dakota', 'Iowa', 'Washington', 'Washington', 'South Dakota', 'New York', 'New York', 'Iowa', 'New York', 'New York', 'District of Columbia', 'Massachusetts', 'Washington', 'New Jersey', 'District of Columbia', 'Washington', 'California', 'North Dakota', 'New Jersey', 'North Dakota', 'New York', 'New Jersey', 'New York', 'Rhode Island', 'North Dakota', 'Iowa', 'Iowa', 'South Dakota', 'Massachusetts', 'Iowa', 'South Dakota', 'Massachusetts', 'Massachusetts', 'New Jersey', 'New York', 'District of Columbia', 'North Dakota', 'North Dakota', 'Washington', 'Washington', 'Massachusetts', 'New Jersey', 'New Jersey', 'Washington', 'Vermont', 'Massachusetts', 'New York', 'New Jersey', 'Massachusetts', 'New Jersey', 'Washington', 'Wyoming', 'Washington', 'California', 'Vermont', 'Oregon', 'Alaska', 'New Jersey', 'New Jersey', 'New Jersey', 'Iowa', 'Oregon', 'North Dakota', 'Oregon', 'District of Columbia', 'California', 'Vermont', 'Idaho', 'New York', 'New York', 'Vermont', 'Iowa', 'Alaska', 'Washington', 'New York', 'New York', 'Rhode Island', 'District of Columbia', 'California', 'Iowa', 'Oregon', 'New Jersey', 'Alaska', 'California', 'California', 'Massachusetts', 'Oregon', 'South Dakota', 'Connecticut', 'Connecticut', 'District of Columbia', 'Oregon', 'Vermont', 'South Dakota', 'New Jersey', 'Washington', 'Washington', 'Connecticut', 'New Jersey', 'Massachusetts', 'Iowa', 'Vermont', 'Iowa', 'California', 'South Dakota', 'California', 'Rhode Island', 'South Dakota', 'Oregon', 'California', 'Idaho', 'Oregon', 'Vermont', 'California', 'New Jersey', 'New York', 'Massachusetts', 'Rhode Island', 'Iowa', 'Arizona', 'Minnesota', 'Iowa', 'District of Columbia', 'New York', 'Massachusetts', 'New York', 'Arizona', 'North Dakota', 'Iowa', 'Illinois', 'Connecticut', 'Rhode Island', 'Iowa', 'New Hampshire', 'North Dakota', 'Montana', 'District of Columbia', 'Idaho', 'Washington', 'California', 'Idaho', 'Oregon', 'Connecticut', 'New Jersey', 'Vermont', 'Illinois', 'Oregon', 'New York', 'Iowa', 'Vermont', 'Connecticut', 'Rhode Island', 'Illinois', 'Oregon', 'New York', 'Connecticut', 'Illinois', 'New York', 'Oregon', 'Idaho', 'Oregon', 'California', 'Idaho', 'New York', 'Massachusetts', 'Massachusetts', 'Hawaii', 'Connecticut', 'Rhode Island', 'Iowa', 'California', 'Vermont', 'Arizona', 'Washington', 'New Jersey', 'New York', 'Maryland', 'New Jersey', 'Maryland', 'Illinois', 'Alaska', 'Massachusetts', 'Vermont', 'Alaska', 'Maryland', 'Maryland', 'Idaho', 'California', 'Arizona', 'Colorado', 'Vermont', 'Colorado', 'Florida', 'California', 'New York', 'Connecticut', 'Connecticut', 'California', 'Idaho', 'California', 'Iowa', 'California', 'Illinois', 'Illinois', 'Maryland', 'California', 'Idaho', 'Massachusetts', 'Connecticut', 'Maryland', 'Oregon', 'Minnesota', 'Idaho', 'Nevada', 'Iowa', 'District of Columbia', 'Idaho', 'Oregon', 'Massachusetts', 'Montana', 'Maryland', 'Maryland', 'Connecticut', 'Massachusetts', 'Rhode Island', 'Maryland', 'Oregon', 'Florida', 'Oregon', 'Oregon', 'Colorado', 'Florida', 'Colorado', 'Massachusetts', 'Rhode Island', 'Florida', 'Florida', 'Hawaii', 'New York', 'Minnesota', 'Maryland', 'Rhode Island', 'Colorado', 'District of Columbia', 'New Hampshire', 'Illinois', 'Minnesota', 'Oregon', 'Maryland', 'Hawaii', 'New York', 'Maryland', 'Utah', 'South Dakota', 'Oregon', 'Hawaii', 'Illinois', 'Rhode Island', 'New York', 'California', 'Oregon', 'Delaware', 'California', 'Vermont', 'Wyoming', 'Hawaii', 'Oregon', 'Maryland', 'Illinois', 'Illinois', 'Maryland', 'New Mexico', 'Florida', 'Arizona', 'Montana', 'New York', 'Wyoming', 'New York', 'Illinois', 'Florida', 'California', 'Ohio', 'Maryland', 'Illinois', 'Vermont', 'Nebraska', 'Vermont', 'Rhode Island', 'Maryland', 'Rhode Island', 'New Hampshire', 'Oregon', 'Idaho', 'Wyoming', 'Idaho', 'Hawaii', 'Florida', 'New York', 'Florida', 'Washington', 'Connecticut', 'Nebraska', 'Colorado', 'Alaska', 'New York', 'District of Columbia', 'Florida', 'Hawaii', 'Arizona', 'Maryland', 'Rhode Island', 'Ohio', 'Hawaii', 'Arizona', 'Nebraska', 'Hawaii', 'Colorado', 'Montana', 'Colorado', 'Colorado', 'California', 'Florida', 'California', 'Minnesota', 'Idaho', 'Montana', 'Minnesota', 'New York', 'Nebraska', 'New York', 'Rhode Island', 'New York', 'Ohio', 'Minnesota', 'California', 'Delaware', 'Hawaii', 'Montana', 'New York', 'Rhode Island', 'Nebraska', 'New York', 'Minnesota', 'Hawaii', 'Minnesota', 'Maryland', 'Connecticut', 'Connecticut', 'Iowa', 'Minnesota', 'Illinois', 'District of Columbia', 'Rhode Island', 'Wyoming', 'Montana', 'Rhode Island', 'South Dakota', 'Rhode Island', 'California', 'Michigan', 'Michigan', 'Connecticut', 'Vermont', 'Illinois', 'Connecticut', 'Florida', 'California', 'Washington', 'Rhode Island', 'New Hampshire', 'Vermont', 'Alaska', 'Nebraska', 'Vermont', 'Florida', 'District of Columbia', 'Alaska', 'Wyoming', 'Washington', 'Ohio', 'Arizona', 'Maine', 'Hawaii', 'Vermont', 'Alaska', 'Arizona', 'California', 'Alaska', 'South Dakota', 'Florida', 'Alaska', 'New Mexico', 'Connecticut', 'Washington', 'Nebraska', 'Rhode Island', 'Washington', 'Florida', 'New Hampshire', 'Tennessee', 'Oregon', 'Florida', 'New Hampshire', 'Minnesota', 'Florida', 'Pennsylvania', 'Texas', 'Minnesota', 'Iowa', 'California', 'Nebraska', 'Michigan', 'Hawaii', 'Texas', 'Vermont', 'California', 'Hawaii', 'Idaho', 'Utah', 'New Mexico', 'Colorado', 'Montana', 'Montana', 'Montana', 'Texas', 'California', 'Georgia', 'Delaware', 'New York', 'Vermont', 'Illinois', 'California', 'Minnesota', 'Pennsylvania', 'New Hampshire', 'California', 'Texas', 'New Hampshire', 'Iowa', 'Louisiana', 'Tennessee', 'Rhode Island', 'District of Columbia', 'Minnesota', 'Arizona', 'Arizona', 'Arizona', 'Delaware', 'Minnesota', 'United States', 'California', 'Nebraska', 'Oregon', 'New York', 'Hawaii', 'Indiana', 'North Dakota', 'Georgia', 'Alaska', 'Florida', 'North Dakota', 'Arizona', 'California', 'Nevada', 'Montana', 'Hawaii', 'Nebraska', 'New York', 'United States', 'Minnesota', 'Michigan', 'Texas', 'Mississippi', 'South Carolina', 'Florida', 'Illinois', 'California', 'Nebraska', 'Hawaii', 'Florida', 'Florida', 'Ohio', 'Washington', 'Minnesota', 'Pennsylvania', 'Georgia', 'Delaware', 'Nebraska', 'Minnesota', 'New Jersey', 'Delaware', 'New Jersey', 'Illinois', 'Utah', 'Texas', 'Louisiana', 'Iowa', 'New York', 'Pennsylvania', 'Georgia', 'Minnesota', 'Iowa', 'Washington', 'United States', 'New Hampshire', 'Florida', 'Wyoming', 'Colorado', 'Hawaii', 'South Dakota', 'Minnesota', 'New York', 'South Carolina', 'Pennsylvania', 'Minnesota', 'Minnesota', 'United States', 'Pennsylvania', 'Rhode Island', 'Virginia', 'Texas', 'Wisconsin', 'Vermont', 'Texas', 'New York', 'Hawaii', 'Virginia', 'Kansas', 'Michigan', 'Louisiana', 'Minnesota', 'United States', 'Nebraska', 'Georgia', 'Nebraska', 'Virginia', 'Texas', 'Hawaii', 'Virginia', 'New York', 'Utah', 'Rhode Island', 'Utah', 'Colorado', 'North Dakota', 'New Hampshire', 'Michigan', 'United States', 'New Jersey', 'Delaware', 'United States', 'Delaware', 'Virginia', 'Mississippi', 'Minnesota', 'Louisiana', 'Maine', 'Colorado', 'North Carolina', 'United States', 'Delaware', 'Arizona', 'Montana', 'New York', 'Hawaii', 'New York', 'Florida', 'Alaska', 'Colorado', 'Texas', 'North Dakota', 'Texas', 'Texas', 'Ohio', 'Pennsylvania', 'North Dakota', 'Wisconsin', 'Pennsylvania', 'Michigan', 'Virginia', 'South Carolina', 'Hawaii', 'Georgia', 'Pennsylvania', 'Michigan', 'Virginia', 'Nebraska', 'Hawaii', 'Arizona', 'Florida', 'New York', 'Tennessee', 'Rhode Island', 'South Dakota', 'Hawaii', 'New York', 'Rhode Island', 'New Hampshire', 'Rhode Island', 'Iowa', 'Minnesota', 'Hawaii', 'New Hampshire', 'Georgia', 'Virginia', 'Louisiana', 'North Carolina', 'Nebraska', 'Ohio', 'Kansas', 'Louisiana', 'Minnesota', 'Iowa', 'Rhode Island', 'Michigan', 'New Hampshire', 'Virginia', 'Oregon', 'Montana', 'North Dakota', 'Hawaii', 'Idaho', 'Maryland', 'Montana', 'Utah', 'New Mexico', 'Montana', 'New Hampshire', 'Delaware', 'Indiana', 'Ohio', 'Idaho', 'New Jersey', 'United States', 'Georgia', 'Indiana', 'Idaho', 'New York', 'Wisconsin', 'Nebraska', 'Delaware', 'South Carolina', 'Texas', 'Maine', 'Maryland', 'Minnesota', 'New Hampshire', 'New Hampshire', 'New Hampshire', 'New York', 'Colorado', 'Florida', 'Delaware', 'Washington', 'Alabama', 'Alabama', 'Ohio', 'Mississippi', 'Nevada', 'Arizona', 'Georgia', 'Connecticut', 'South Carolina', 'Vermont', 'Maryland', 'District of Columbia', 'Utah', 'Delaware', 'Rhode Island', 'North Dakota', 'Colorado', 'Maryland', 'Hawaii', 'Colorado', 'Nebraska', 'Louisiana', 'District of Columbia', 'Texas', 'New Hampshire', 'Alabama', 'Ohio', 'Alabama', 'Michigan', 'North Carolina', 'South Carolina', 'Iowa', 'Wyoming', 'New York', 'New Hampshire', 'Utah', 'Alaska', 'Iowa', 'Washington', 'South Carolina', 'Texas', 'Wisconsin', 'Minnesota', 'Kentucky', 'North Carolina', 'Wisconsin', 'Nebraska', 'Georgia', 'United States', 'Maine', 'Hawaii', 'Connecticut', 'New Mexico', 'Maine', 'Utah', 'Tennessee', 'Wyoming', 'Virginia', 'Alabama', 'Rhode Island', 'Virginia', 'Indiana', 'Oregon', 'Georgia', 'Nebraska', 'Mississippi', 'Texas', 'Georgia', 'Delaware', 'Wisconsin', 'Georgia', 'Idaho', 'Hawaii', 'South Carolina', 'New Hampshire', 'North Dakota', 'Tennessee', 'Tennessee', 'Hawaii', 'New Hampshire', 'Pennsylvania', 'Texas', 'United States', 'Nebraska', 'Missouri', 'Michigan', 'South Carolina', 'North Carolina', 'Connecticut', 'Virginia', 'Hawaii', 'Maine', 'South Carolina', 'Connecticut', 'Colorado', 'Maryland', 'District of Columbia', 'New York', 'Wisconsin', 'Wisconsin', 'Rhode Island', 'Arizona', 'Wyoming', 'Oklahoma', 'Nebraska', 'Mississippi', 'New Hampshire', 'Indiana', 'Texas', 'Pennsylvania', 'North Carolina', 'Wisconsin', 'Indiana', 'Louisiana', 'Washington', 'Georgia', 'Hawaii', 'Iowa', 'Delaware', 'Alaska', 'Iowa', 'Louisiana', 'Montana', 'Montana', 'Maine', 'Maryland', 'Maine', 'Tennessee', 'New York', 'South Carolina', 'North Dakota', 'New Mexico', 'Utah', 'New Hampshire', 'Rhode Island', 'North Carolina', 'Wisconsin', 'Colorado', 'Minnesota', 'North Carolina', 'New Hampshire', 'New Jersey', 'New Hampshire', 'Louisiana', 'Georgia', 'North Carolina', 'Oregon', 'Louisiana', 'South Carolina', 'District of Columbia', 'Idaho', 'Connecticut', 'Colorado', 'Maryland', 'Florida', 'Maryland', 'Hawaii', 'Nebraska', 'Connecticut', 'Connecticut', 'Nebraska', 'Minnesota', 'West Virginia', 'New Jersey', 'Minnesota', 'Iowa', 'Kansas', 'Connecticut', 'United States', 'Maine', 'Indiana', 'Kentucky', 'District of Columbia', 'Missouri', 'Wyoming', 'Hawaii', 'Florida', 'New York', 'District of Columbia', 'Arizona', 'Florida', 'North Carolina', 'Florida', 'Montana', 'Florida', 'Hawaii', 'Tennessee', 'Kansas', 'Texas', 'Vermont', 'Ohio', 'Mississippi', 'Pennsylvania', 'North Carolina', 'Michigan', 'Ohio', 'Minnesota', 'Rhode Island', 'Mississippi', 'Connecticut', 'New Mexico', 'Nebraska', 'Maryland', 'Tennessee', 'New York', 'Wyoming', 'Minnesota', 'Nebraska', 'Minnesota', 'North Carolina', 'Vermont', 'Rhode Island', 'Indiana', 'South Dakota', 'United States', 'Washington', 'North Dakota', 'North Carolina', 'Colorado', 'Colorado', 'Nebraska', 'Ohio', 'Louisiana', 'Maine', 'Connecticut', 'New Hampshire', 'Maryland', 'Rhode Island', 'Utah', 'Idaho', 'Oklahoma', 'Florida', 'Idaho', 'Washington', 'Louisiana', 'Missouri', 'Maine', 'Maine', 'Alabama', 'Wisconsin', 'Washington', 'Alabama', 'Pennsylvania', 'District of Columbia', 'Hawaii', 'Louisiana', 'New York', 'Colorado', 'Alaska', 'Hawaii', 'Minnesota', 'Arizona', 'Wyoming', 'North Dakota', 'Alaska', 'District of Columbia', 'Alabama', 'Mississippi', 'Hawaii', 'Louisiana', 'Missouri', 'Virginia', 'New Jersey', 'Minnesota', 'Florida', 'Texas', 'New Mexico', 'Wisconsin', 'Michigan', 'Minnesota', 'Michigan', 'Vermont', 'Alaska', 'South Dakota', 'Delaware', 'Maine', 'Missouri', 'Nebraska', 'Maryland', 'Indiana', 'Rhode Island', 'Tennessee', 'Texas', 'New Mexico', 'Minnesota', 'New Mexico', 'Arkansas', 'Delaware', 'Missouri', 'Florida', 'Oregon', 'Indiana', 'United States', 'Iowa', 'Ohio', 'United States', 'Georgia', 'Alaska', 'North Carolina', 'New York', 'New Hampshire', 'Hawaii', 'New Jersey', 'Alabama', 'Virginia', 'Texas', 'Delaware', 'Alaska', 'Mississippi', 'Utah', 'Virginia', 'South Dakota', 'Tennessee', 'Wisconsin', ...]
In [10]:
state=df["State"].to_frame() # seçtiğimiz bir sütunu dataframe türüne çevirme ve bir değişkene atama işlemi
state
Out[10]:
State | |
---|---|
0 | Vermont |
1 | Vermont |
2 | Vermont |
3 | District of Columbia |
4 | Arizona |
5 | District of Columbia |
6 | South Dakota |
7 | Vermont |
8 | Vermont |
9 | Arizona |
10 | District of Columbia |
11 | Washington |
12 | District of Columbia |
13 | District of Columbia |
14 | Washington |
15 | District of Columbia |
16 | District of Columbia |
17 | Washington |
18 | Vermont |
19 | Washington |
20 | Washington |
21 | Vermont |
22 | District of Columbia |
23 | Arizona |
24 | District of Columbia |
25 | South Dakota |
26 | Arizona |
27 | District of Columbia |
28 | Arizona |
29 | Arizona |
… | … |
10266 | West Virginia |
10267 | Mississippi |
10268 | West Virginia |
10269 | Alabama |
10270 | Alabama |
10271 | West Virginia |
10272 | Kentucky |
10273 | Alabama |
10274 | Louisiana |
10275 | Louisiana |
10276 | Alabama |
10277 | Kentucky |
10278 | West Virginia |
10279 | West Virginia |
10280 | Louisiana |
10281 | Alabama |
10282 | Louisiana |
10283 | Alabama |
10284 | Louisiana |
10285 | Louisiana |
10286 | Mississippi |
10287 | Mississippi |
10288 | District of Columbia |
10289 | Mississippi |
10290 | Mississippi |
10291 | District of Columbia |
10292 | Mississippi |
10293 | Mississippi |
10294 | District of Columbia |
10295 | District of Columbia |
10296 rows × 1 columns
In [13]:
state.to_csv("State.csv") # to_csv metodu sayesinde dataframe değişkenimizi bir csv dosyasına dönüştürüp
# içinde bulunduğumuz klasöre kaydedebiliyoruz.
In [14]:
pd.read_csv("State.csv") # kaydettiğimiz dosyada iki tane index sütunu oluştuğu görülmektedir.
# Bunu engellemek için aşağıdaki yolu izlememiz gerekiyor.
Out[14]:
Unnamed: 0 | State | |
---|---|---|
0 | 0 | Vermont |
1 | 1 | Vermont |
2 | 2 | Vermont |
3 | 3 | District of Columbia |
4 | 4 | Arizona |
5 | 5 | District of Columbia |
6 | 6 | South Dakota |
7 | 7 | Vermont |
8 | 8 | Vermont |
9 | 9 | Arizona |
10 | 10 | District of Columbia |
11 | 11 | Washington |
12 | 12 | District of Columbia |
13 | 13 | District of Columbia |
14 | 14 | Washington |
15 | 15 | District of Columbia |
16 | 16 | District of Columbia |
17 | 17 | Washington |
18 | 18 | Vermont |
19 | 19 | Washington |
20 | 20 | Washington |
21 | 21 | Vermont |
22 | 22 | District of Columbia |
23 | 23 | Arizona |
24 | 24 | District of Columbia |
25 | 25 | South Dakota |
26 | 26 | Arizona |
27 | 27 | District of Columbia |
28 | 28 | Arizona |
29 | 29 | Arizona |
… | … | … |
10266 | 10266 | West Virginia |
10267 | 10267 | Mississippi |
10268 | 10268 | West Virginia |
10269 | 10269 | Alabama |
10270 | 10270 | Alabama |
10271 | 10271 | West Virginia |
10272 | 10272 | Kentucky |
10273 | 10273 | Alabama |
10274 | 10274 | Louisiana |
10275 | 10275 | Louisiana |
10276 | 10276 | Alabama |
10277 | 10277 | Kentucky |
10278 | 10278 | West Virginia |
10279 | 10279 | West Virginia |
10280 | 10280 | Louisiana |
10281 | 10281 | Alabama |
10282 | 10282 | Louisiana |
10283 | 10283 | Alabama |
10284 | 10284 | Louisiana |
10285 | 10285 | Louisiana |
10286 | 10286 | Mississippi |
10287 | 10287 | Mississippi |
10288 | 10288 | District of Columbia |
10289 | 10289 | Mississippi |
10290 | 10290 | Mississippi |
10291 | 10291 | District of Columbia |
10292 | 10292 | Mississippi |
10293 | 10293 | Mississippi |
10294 | 10294 | District of Columbia |
10295 | 10295 | District of Columbia |
10296 rows × 2 columns
In [15]:
state.to_csv("State.csv",index=False) # index=False parametresi sayesinde fazladan oluşturulan index sütunundan kurtulabiliriz.
In [16]:
pd.read_csv("State.csv")
Out[16]:
State | |
---|---|
0 | Vermont |
1 | Vermont |
2 | Vermont |
3 | District of Columbia |
4 | Arizona |
5 | District of Columbia |
6 | South Dakota |
7 | Vermont |
8 | Vermont |
9 | Arizona |
10 | District of Columbia |
11 | Washington |
12 | District of Columbia |
13 | District of Columbia |
14 | Washington |
15 | District of Columbia |
16 | District of Columbia |
17 | Washington |
18 | Vermont |
19 | Washington |
20 | Washington |
21 | Vermont |
22 | District of Columbia |
23 | Arizona |
24 | District of Columbia |
25 | South Dakota |
26 | Arizona |
27 | District of Columbia |
28 | Arizona |
29 | Arizona |
… | … |
10266 | West Virginia |
10267 | Mississippi |
10268 | West Virginia |
10269 | Alabama |
10270 | Alabama |
10271 | West Virginia |
10272 | Kentucky |
10273 | Alabama |
10274 | Louisiana |
10275 | Louisiana |
10276 | Alabama |
10277 | Kentucky |
10278 | West Virginia |
10279 | West Virginia |
10280 | Louisiana |
10281 | Alabama |
10282 | Louisiana |
10283 | Alabama |
10284 | Louisiana |
10285 | Louisiana |
10286 | Mississippi |
10287 | Mississippi |
10288 | District of Columbia |
10289 | Mississippi |
10290 | Mississippi |
10291 | District of Columbia |
10292 | Mississippi |
10293 | Mississippi |
10294 | District of Columbia |
10295 | District of Columbia |
10296 rows × 1 columns
In [19]:
import os # os metodunu kullanmak için önce import etmemiz lazım
os.chdir("C:/Users/E-A-S/Desktop/pandas-kaynak") # excel dosyamızın olduğu dizini dosyaların aranacağı dizinler arasına eklemek için yapıyoruz.
pd.read_excel("excel.xlsx") # excel dosyası okuma işlemi
Out[19]:
Futbolcu | Gol | |
---|---|---|
0 | Miroslav Klose | 5 |
1 | Lucas Podolski | 4 |
2 | David Villa | 3 |
3 | Maxi Rodriguez | 3 |
4 | Thierry Henry | 3 |
5 | Zinedine Zidane | 3 |
6 | Hernan Crespo | 3 |
7 | Fernando Torres | 3 |
8 | Ronaldo | 3 |
9 | Adriano | 2 |
In [29]:
pd.read_excel("excel.xlsx", sheet_name=["2006","2010"]) # excel dosyamızda iki sayfa bulunmaktadır.
# 2006 ve 2010 adındaki iki sayfayı okumak için de sheet_name parametresi kullanıldı.
# Kaç sayfa olursa olsun hangi sayfaları okumak istiyorsak sadece onları belirtebiliriz.
Out[29]:
OrderedDict([('2006', Futbolcu Gol 0 Miroslav Klose 5 1 Lucas Podolski 4 2 David Villa 3 3 Maxi Rodriguez 3 4 Thierry Henry 3 5 Zinedine Zidane 3 6 Hernan Crespo 3 7 Fernando Torres 3 8 Ronaldo 3 9 Adriano 2), ('2010', Futbolcu Gol 0 David Villa 5 1 Wesley Sneijder 5 2 Diego Forlan 5 3 Thomas Müller 5 4 Miroslav Klose 4 5 Robert Vittek 4 6 G.Higuain 4 7 Asamoah Gyan 3 8 Landon Donovan 3 9 Luis Suares 3)])
In [30]:
c=pd.read_excel("excel.xlsx", sheet_name=["2006","2010"])
c["2010"] # okuduğumuz excel dosyası sayfalarından hangi sayfayı görmek istersek onu seçebiliriz.
Out[30]:
Futbolcu | Gol | |
---|---|---|
0 | David Villa | 5 |
1 | Wesley Sneijder | 5 |
2 | Diego Forlan | 5 |
3 | Thomas Müller | 5 |
4 | Miroslav Klose | 4 |
5 | Robert Vittek | 4 |
6 | G.Higuain | 4 |
7 | Asamoah Gyan | 3 |
8 | Landon Donovan | 3 |
9 | Luis Suares | 3 |
In [31]:
pd.read_csv("2014 wc.csv") # bir csv dosyası okuma işlemi
Out[31]:
Futbolcu | Gol | |
---|---|---|
0 | James Rodriguez | 6 |
1 | Thomas Müller | 5 |
2 | Neymar | 4 |
3 | R.Van Persie | 4 |
4 | Lionel Messi | 4 |
5 | Andre Schürrle | 3 |
6 | Enner Valencia | 3 |
7 | Shakiri | 3 |
8 | Arjen Robben | 3 |
9 | Tim Cahill | 2 |
In [34]:
çevirme=pd.read_csv("2014 wc.csv")
çevirme.to_excel("2014.xlsx", sheet_name="24",index=False) # burada okuduğumuz bir excel dosyasını csv dosyasına çevirme
# işlemi yapılmaktadır. Okunan csv dosyası hangi dizindeyse bu kodlar sayesinde 2014.xlsx adında bir exel dosyasına
# çevrilmiş ve kaydedilmiştir. Eski csv dosyası da hala durmaktadır. Oluşturulan excel dosyasında bu veriler 24 adında bir
# sayfaya kaydedilmiştir. index?False parametresi sayesinde de fazladan bir index sütunu oluşturulması engellenmiştir.
In [35]:
pd.read_excel("2014.xlsx")
Out[35]:
Futbolcu | Gol | |
---|---|---|
0 | James Rodriguez | 6 |
1 | Thomas Müller | 5 |
2 | Neymar | 4 |
3 | R.Van Persie | 4 |
4 | Lionel Messi | 4 |
5 | Andre Schürrle | 3 |
6 | Enner Valencia | 3 |
7 | Shakiri | 3 |
8 | Arjen Robben | 3 |
9 | Tim Cahill | 2 |
In [45]:
a=pd.read_html("https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/List_of_banks_in_Turkey.html")
a # internetten direk html sayfası okuma.
Out[45]:
[ 0 1 \ 0 Bank Foundation 1 Ziraat Bankası 1863 2 Türkiye İş Bankası 1924 3 Garanti Bank 1946 4 Akbank 1948 5 Yapı ve Kredi Bankası 1944 6 Halk Bankası 1938 7 VakıfBank 1954 8 Finansbank 1987 9 Türk Ekonomi Bankası 1927 10 Denizbank 1997 11 HSBC Bank 1990 12 ING Bank 1984 13 Türk Eximbank 1987 14 Odeabank 2012 15 Şekerbank 1953 16 İller Bankası 1933 17 Türkiye Sınai Kalkınma Bankası 1950 18 Alternatif Bank 1992 19 Citibank 1980 20 Anadolubank 1996 21 Burgan Bank 1992 22 İstanbul Takas ve Saklama Bankası 1995 23 Tekstilbank 1986 24 Deutsche Bank 1988 25 Fibabanka 1984 26 Aktif Yatırım Bankası 1999 27 The Royal Bank of Scotland 1921 28 Türkiye Kalkınma Bankası 1975 29 Turkland Bank 1991 30 Bank of Tokyo-Mitsubishi UFJ Turkey 2013 31 Arap Türk Bankası 1977 32 Intesa Sanpaolo S.p.A. 2013 33 Merrill Lynch 1992 34 BankPozitif 1999 35 Société Générale 1989 36 Turkish Bank 1982 37 Rabobank 2014 38 JPMorgan Chase 1984 39 Birleşik Fon Bankası 1958 40 Bank Mellat 1982 41 Nurol Yatırım Bankası 1999 42 Diler Yatırım Bankası 1998 43 GSD Yatırım Bankası 1998 44 Habib Bank Limited 1983 45 Credit Agricole (Standard Chartered) 1990 46 Adabank 1985 47 Taib Yatırım Bank (Pasha Yatırım) 1987 2 \ 0 # of branches As of 22 February 2016 1 1789 2 1355 3 974 4 901 5 997 6 948 7 917 8 641 9 528 10 691 11 280 12 288 13 3 14 55 15 300 16 19 17 3 18 57 19 8 20 106 21 55 22 1 23 44 24 1 25 68 26 8 27 1 28 1 29 34 30 1 31 7 32 1 33 1 34 1 35 1 36 13 37 1 38 1 39 1 40 3 41 1 42 1 43 1 44 1 45 1 46 1 47 1 3 0 Total assets (million TL) As of September 2015[4] 1 299084 2 279942 3 260700 4 236148 5 232248 6 189686 7 188820 8 90410 9 73666 10 82195 11 32869 12 51645 13 46518 14 32841 15 23777 16 17494 17 20853 18 13793 19 8920 20 11620 21 10696 22 7631 23 6264 24 2681 25 9476 26 7383 27 1754 28 4975 29 5651 30 4737 31 3975 32 3925 33 204 34 2090 35 477 36 1397 37 843 38 392 39 2450 40 354 41 788 42 116 43 231 44 113 45 83 46 53 47 276 , 0 \ 0 Banks of Turkey 1 NaN 2 Central Bank 3 NaN 4 Commercial 5 Public 6 NaN 7 Private 8 NaN 9 Foreign 10 NaN 11 Investment 12 Public 13 NaN 14 Participation 15 Public 16 NaN 17 Private 18 NaN 19 1 Under TMSF italic: Global branch page 20 Public 21 NaN 22 Private 23 NaN 24 Foreign 25 Public 26 Public 27 NaN 28 Private 1 2 \ 0 NaN NaN 1 NaN NaN 2 NaN NaN 3 NaN NaN 4 Public Halk Bankası VakıfBank Ziraat Bankas... Public 5 Halk Bankası VakıfBank Ziraat Bankası Adaba... NaN 6 NaN NaN 7 Akbank Anadolubank Türkiye İş Bankası Fibab... NaN 8 NaN NaN 9 A&T Bank Abank Burgan Bank Citibank DenizB... NaN 10 NaN NaN 11 Public İlbank Public 12 İlbank NaN 13 NaN NaN 14 Public Vakıf Katılım Ziraat Katılım Private ... Public 15 Vakıf Katılım Ziraat Katılım NaN 16 NaN NaN 17 Albaraka Türk Kuveyt Türk Türkiye Finans NaN 18 NaN NaN 19 NaN NaN 20 Halk Bankası VakıfBank Ziraat Bankası Adaba... NaN 21 NaN NaN 22 Akbank Anadolubank Türkiye İş Bankası Fibab... NaN 23 NaN NaN 24 A&T Bank Abank Burgan Bank Citibank DenizB... NaN 25 İlbank NaN 26 Vakıf Katılım Ziraat Katılım NaN 27 NaN NaN 28 Albaraka Türk Kuveyt Türk Türkiye Finans NaN 3 4 5 \ 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 NaN NaN NaN 4 Halk Bankası VakıfBank Ziraat Bankası Adaba... NaN Private 5 NaN NaN NaN 6 NaN NaN NaN 7 NaN NaN NaN 8 NaN NaN NaN 9 NaN NaN NaN 10 NaN NaN NaN 11 İlbank NaN NaN 12 NaN NaN NaN 13 NaN NaN NaN 14 Vakıf Katılım Ziraat Katılım NaN Private 15 NaN NaN NaN 16 NaN NaN NaN 17 NaN NaN NaN 18 NaN NaN NaN 19 NaN NaN NaN 20 NaN NaN NaN 21 NaN NaN NaN 22 NaN NaN NaN 23 NaN NaN NaN 24 NaN NaN NaN 25 NaN NaN NaN 26 NaN NaN NaN 27 NaN NaN NaN 28 NaN NaN NaN 6 7 8 \ 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 NaN NaN NaN 4 Akbank Anadolubank Türkiye İş Bankası Fibab... NaN Foreign 5 NaN NaN NaN 6 NaN NaN NaN 7 NaN NaN NaN 8 NaN NaN NaN 9 NaN NaN NaN 10 NaN NaN NaN 11 NaN NaN NaN 12 NaN NaN NaN 13 NaN NaN NaN 14 Albaraka Türk Kuveyt Türk Türkiye Finans NaN NaN 15 NaN NaN NaN 16 NaN NaN NaN 17 NaN NaN NaN 18 NaN NaN NaN 19 NaN NaN NaN 20 NaN NaN NaN 21 NaN NaN NaN 22 NaN NaN NaN 23 NaN NaN NaN 24 NaN NaN NaN 25 NaN NaN NaN 26 NaN NaN NaN 27 NaN NaN NaN 28 NaN NaN NaN 9 0 NaN 1 NaN 2 NaN 3 NaN 4 A&T Bank Abank Burgan Bank Citibank DenizB... 5 NaN 6 NaN 7 NaN 8 NaN 9 NaN 10 NaN 11 NaN 12 NaN 13 NaN 14 NaN 15 NaN 16 NaN 17 NaN 18 NaN 19 NaN 20 NaN 21 NaN 22 NaN 23 NaN 24 NaN 25 NaN 26 NaN 27 NaN 28 NaN , 0 1 0 Public Halk Bankası VakıfBank Ziraat Bankası Adaba... 1 NaN NaN 2 Private Akbank Anadolubank Türkiye İş Bankası Fibab... 3 NaN NaN 4 Foreign A&T Bank Abank Burgan Bank Citibank DenizB..., 0 1 0 Public İlbank, 0 1 0 Public Vakıf Katılım Ziraat Katılım 1 NaN NaN 2 Private Albaraka Türk Kuveyt Türk Türkiye Finans, 0 \ 0 List of banks in Asia 1 NaN 2 Sovereign states 3 NaN 4 States withlimited recognition 5 NaN 6 Dependencies andother territories 1 0 NaN 1 NaN 2 Afghanistan Armenia Azerbaijan Bahrain Ban... 3 NaN 4 Abkhazia Nagorno-Karabakh Northern Cyprus P... 5 NaN 6 British Indian Ocean Territory Christmas Isla... , 0 \ 0 List of banks in Europe 1 NaN 2 Sovereign states 3 NaN 4 States with limitedrecognition 5 NaN 6 Dependencies andother territories 1 0 NaN 1 NaN 2 Albania Andorra Armenia Austria Azerbaijan... 3 NaN 4 Abkhazia Kosovo Nagorno-Karabakh Northern C... 5 NaN 6 Åland Faroe Islands Gibraltar Guernsey Isl... ]
In [48]:
a[0] # html sayfası içindeki tabloyu aldık.
Out[48]:
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | Bank | Foundation | # of branches As of 22 February 2016 | Total assets (million TL) As of September 2015[4] |
1 | Ziraat Bankası | 1863 | 1789 | 299084 |
2 | Türkiye İş Bankası | 1924 | 1355 | 279942 |
3 | Garanti Bank | 1946 | 974 | 260700 |
4 | Akbank | 1948 | 901 | 236148 |
5 | Yapı ve Kredi Bankası | 1944 | 997 | 232248 |
6 | Halk Bankası | 1938 | 948 | 189686 |
7 | VakıfBank | 1954 | 917 | 188820 |
8 | Finansbank | 1987 | 641 | 90410 |
9 | Türk Ekonomi Bankası | 1927 | 528 | 73666 |
10 | Denizbank | 1997 | 691 | 82195 |
11 | HSBC Bank | 1990 | 280 | 32869 |
12 | ING Bank | 1984 | 288 | 51645 |
13 | Türk Eximbank | 1987 | 3 | 46518 |
14 | Odeabank | 2012 | 55 | 32841 |
15 | Şekerbank | 1953 | 300 | 23777 |
16 | İller Bankası | 1933 | 19 | 17494 |
17 | Türkiye Sınai Kalkınma Bankası | 1950 | 3 | 20853 |
18 | Alternatif Bank | 1992 | 57 | 13793 |
19 | Citibank | 1980 | 8 | 8920 |
20 | Anadolubank | 1996 | 106 | 11620 |
21 | Burgan Bank | 1992 | 55 | 10696 |
22 | İstanbul Takas ve Saklama Bankası | 1995 | 1 | 7631 |
23 | Tekstilbank | 1986 | 44 | 6264 |
24 | Deutsche Bank | 1988 | 1 | 2681 |
25 | Fibabanka | 1984 | 68 | 9476 |
26 | Aktif Yatırım Bankası | 1999 | 8 | 7383 |
27 | The Royal Bank of Scotland | 1921 | 1 | 1754 |
28 | Türkiye Kalkınma Bankası | 1975 | 1 | 4975 |
29 | Turkland Bank | 1991 | 34 | 5651 |
30 | Bank of Tokyo-Mitsubishi UFJ Turkey | 2013 | 1 | 4737 |
31 | Arap Türk Bankası | 1977 | 7 | 3975 |
32 | Intesa Sanpaolo S.p.A. | 2013 | 1 | 3925 |
33 | Merrill Lynch | 1992 | 1 | 204 |
34 | BankPozitif | 1999 | 1 | 2090 |
35 | Société Générale | 1989 | 1 | 477 |
36 | Turkish Bank | 1982 | 13 | 1397 |
37 | Rabobank | 2014 | 1 | 843 |
38 | JPMorgan Chase | 1984 | 1 | 392 |
39 | Birleşik Fon Bankası | 1958 | 1 | 2450 |
40 | Bank Mellat | 1982 | 3 | 354 |
41 | Nurol Yatırım Bankası | 1999 | 1 | 788 |
42 | Diler Yatırım Bankası | 1998 | 1 | 116 |
43 | GSD Yatırım Bankası | 1998 | 1 | 231 |
44 | Habib Bank Limited | 1983 | 1 | 113 |
45 | Credit Agricole (Standard Chartered) | 1990 | 1 | 83 |
46 | Adabank | 1985 | 1 | 53 |
47 | Taib Yatırım Bank (Pasha Yatırım) | 1987 | 1 | 276 |
In [ ]: